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Using the Svetlov theory, it is shown that the ratio of intrinsic flow birefringence to intrinsic 
viscosity is independent of the magnitude of the hydrodynamic interaction, in the case where 
the latter is consistently pre-averaged. The intrinsic birefringence has been calculated on Tagami's 
model for stiff chains, and the results are compared with earlier theories. 

So far, intrinsic birefringence has been calculated for several models of stiff chains l
-

4
. 

Some discrepancies are obvious in the results: different views have been expressed 
with respect to the influence of hydrcdynamic interaction on the ratio of intrinsic 
birefrfngence and intrinsic viscosity2 -4, and relations describing the magnitude 
of the "optical segment,,1,2 have been found to depend on the chain model used 

All theories so far in existence contemplate only the "inherent" chain birefringence 
(the first term in Eq. (2) given below). With respect to the evaluation of experimental 
data, it seems desirable to extend the theory by calculating the interaction term (form 
effect - second term in Eq. (2) - discus~ed in more detail in ref. 5

). For this purpose, 
one needs a sufficiently realistic, though mathematically as simple as possible, model 
of the stiff polymer chain. In our view, ~uch requirements are best met by the Tagami 
modeI6 ,7. Since not even the "inherent" birefringence it~elf has been calculated 
for this chain model, we calculate it in this work. The result is compared with the 
birefringence of a persistent chain, generally regarded as a satisfactory model of stiff 
chains. 

In addition, we try to examine conditions under which the ratio of intrinsic bire
fringence [n J to intrinsic viscosity ['1J is independent of hydrodynamic interaction, 
and contribute in this way to the elucidation of the differences mentioned above 
between the results obtained using existing theories. 

Effect of Hydrodynamic Interaction on [n J/[ '1J 
For the intrinsic birefringence [n J of a polymer chain modelled by an assembly 
of frictional centres the following equation holds 5

: 

(1) 
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where k is the Boltzmann constant; T is absolute temperature; ns and I]s are the 
refractive index of the solvent and the solvent viscosity, respectively; NA is the 
Avogadro number; M is molecular weight of the polymer and L'l.fr for a polymer 
in the isotropic solvent is defined by 

where < > is the mean val ue; ff It is the trace of the tensor; y is the tensor of the optical 
polarizability of a polymer molecule; A is the tensor of the optical interaction defined 
in ref. 5; and X is the hydrodynamic tensor obtained by Svetlov8 by solving the Kirk
wood-Risemann diffusion equation (it is defined in ref. 8

). (X' introduced in ref.5 
is defined by X' = -kTX and not by X' = -X, as erroneously given in ref. 5) 
In this work we try to calculate the 1st term in Eq. (2), in the same way as earlier 
authors l - 4 •8 . 

To calculate L'l.fr with an exact expression for X would be very difficult. We there
fore use Svetlov's approximation3

, in which it is assumed that the tensor properties 
of X are the same as with the tensor of the moment of inertia, I. In this case equation 
(3) holds for the tensor X, 

(3) 

where Dr is the rotational diffusion constant of the polymer molecule. By using 
only the first term in Eq. (2) and by substituting X with an expression from Eq. (3), 
we obtain 

(4) 

Now we examine the effect of hydrodynamic interaction on [n ]/[ I] J. According 
to the theory of Shimada and Yamakawa4

, and of Noda and Hearst2
, this ratio 

is in principle independent of hydrodynamic interaction. According to an estimate 
by Svetlov3

, who uses a model of an equivalent ellipsoid without preaveraging 
the hydrodynamic interaction in the calculation of [I]] and Dr' [n ]/[ 11] for a per
sistent chain depends on the hydrodynamic interaction. 

If we start with Tsuda's theory, [I]] and Dr are described by the relations9
: 

Collection Czechoslov. Chern. Commun. [Vol. 44) (1979) 



Intrinsic Flow Birefringence of Stiff Chains 1583 

(6) 

where, is the frictional resistance of the frictional centre, ,(I) and ,(s) are the posi
tion vectors of frictional centres 1 and s, ex, ey are the unit vectors in the directions 
of the axes x and y of the laboratory system of coordinates, and T(ls) is Oseen's tensor 
of hydrodynamic interaction defined in ref. 3.8.9. 

If in Eqs (5) and (6) tensor T(ls) is replaced with tensor (T(IS» f (f is the unit 
tensor), as is usual in calculations of hydrodynamic quantities1o, we obtain, after 
averaging the right-hand sides of Eqs (5) and (6) over all orientations of the system 
of coordinates connected with the molecule with respect to the laboratory system, 
the known relation 

(7) 

It follows from the derivation that Eq. (7) is generally valid in the case of the pre
averaging of hydrodynamic interaction, irrespective of the statistical medel of the 
polymer chain under consideration. The same conclusion is reached if the Kirk
wood-Riseman theory is used in the calculation of [11] and D /0. 

After substitution for Dr from Eq. (7) into Eq. (4), and for flrr from Eq. (4) into 
Eq. (1), we obtain for [n]/[11] 

[n] = ~ (n; + 2)2 (ffllY ffd - 3ffll(Y . '» 
[11] 45kT ns (ffll') 

=~. (n; + 2)2 flcxer • 
45kT ns 

(8) 

For a freely joined chain, flcxer defined by Eq. (8) is the anisotropy of a statistical 
segment. It follows from Eq. (8) that in the case of the preaveraging of hydrodynamic 
interaction in the calculation of [11] and Dr' [n ]/[11] does not depend on hydrodynamic 
interaction, even if the Svetlov theory is used 3 . Such a conclusion is consistent 
with the results of the Shimada-Yamakawa4 and Noda-Hearst theories2

. The proce
dure employed in both theories corresponds to a consistent preaveraging of Oseen's 
tensor in all expressions. 

If calculations of [riJ and Dr using Eqs (5) and (6) were carried out without the preaveraging 
of TOs), the relation between them would generally be dependent on the statistical chain model. 
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Such calculation for models of stiff chains (e.g. the Tagami or persistent model) would be rather 
labour-consuming. We believe that for a consistent investigation of the effect of the anisotropy 
of hydrodynamic interaction on [n]/[I1] one would have to compare the results obtained by means 
of the exact tensor X with those obtained for X given by Eq. (3) without the preaveraging of T 
in the equations for [11] and Dr' on the one hand, and with the results obtained by a consistent 
preaveraging of T in all expressions, on the other. It should be pointed out, however, that calcula
tions carried out by using the exact theory 8 can be performed only for the simplest chain models. 

Let it be noted that by preaveraging the hydrodynamic interaction and by employing the 
procedure just outlined, one arrives at the conclusion that [n]/[I1l is independent of the magnitude 
of hydrodynamic interaction, even taking into account the second term in Eq. (2). 

With respect to results of the above analysis of the effect of hydrodynamic 
interaction on [n ]/[ '1], the calculations presented in the subsequent part of this 
work are carried out only for a free-draining chain. 

Calculation for the Tagami Chain Model 

The distribution function of the position vectors ro and r and tangential vectors uo, 

u of chain ends, p(r, u, L I ro, uo), of the Tagami chain model has the form 7 

where 

+ 2h(e U - uo) r + - - ro - - + b r + - - ro - - , UL (U uo) (U UO)2J} 
2A. 2A. 2A. 2A. 

a = L13A. 

b = (1/3) (e4
.l

L 
- 1) , 

h = (l/3A.)(eUL 
- 1), 

A. = 1/1 is the reciprocal statistical segment, and Lis the contour chain length. 
The mean value of F(r, u, ro, Uo, L) is calculated using the expression 

dr dro du duo, 

where g(uo) = (l/41t) 8(luol - 1), and 8 is the Dirac delta function . 

(9) 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

(11) 
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For a chain consisting of N rotationally symmetrical basic (not statistical) segments, 
the tensor of polarizability y may be written in the form 

N 

Y = L (a 2E + Aau(l)u(l») , (12) 
1=1 

where a \, a2 are the polarizabilities of the segment in the direction of the chain 
and perpendicular to it, respectively, Aa = a l - a2' and u(l)u(1) is the dyadic pro
duct of tangential vectors to the chain in the centre of the i-th segment. For the tensor 
of the moment of inertia we have3

•
8 

N k-\ 

1 = (l/(N + 1)) L L [(r(kJ) . r(1'J») E - r(l<j)r(k j )] , 

1<=0 J=O 

where r(kj) = r(l<) - r(J). 

After substitution for y and 1 from Eqs (12), (13) we obtain 

ANN k-l 
- __ a_ L L L (U(1)2 r (kJ)2>. 

N + 1 1=1 k=O j=O 

Eq. (I4) may be rewritten to become 

where 

Aa N k-l 

(!T1y!T11 - 3!T.z(y .1» = -- L L (N - k)(3A l + 
N + 1 k=OI=O 

A = «(U(l). r(kO»)2> = ~(s + 2.- _ ~e-2l..S1 + ~e-4A'1 + 
2 3)' I< 2}.}. 2}. 
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(21) 

Now we examine the behaviour of a chain represented by a continuous curve. 
In this case, Eq. (15) becomes 

(!I)y!l)' - 3!1-t(y. '» = AafLf'''(L- sk)(3A 1 + 3A 2 + 3A3 -

L 0 0 

-A4 - A~ - A 6 ) ds) dsk , (22) 

where Aa is the optical anisotropy of the unit chain length. After substitution from 
Eqs (16)-(21) into Eq. (22) and integration, we obtain 

(!llty!l-tl - 3!1.z(y . '» = 

(23) 

It follows from the definition of the tensor of the moment of inertia3 •8 and of the 
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mean radius of gyration <S2> that 

(24) 

Since the relation for the radius of gyration of the Tagami chain is the same as for 
that of the persistent chain6

•
7

, we obtain!! for <ff -t(I» 

(25) 

For the effective anisotropy of polarizability ~ctef' defined by Eq. (8), we may write 

~a (5 4 41 1187 5 - 21L 

~ctef = T "3 - J:L + 8A2Li - 384A3L3 + 4A2L2 e + 

For the region of rod-like behaviour of the chain we obtain, by neglecting terms 
proportional to (AL)I' for k > 1 in Eq. (26), 

(27) 

It can be seen from Eq. (27) that Tagami's chain gives the correct expression for 
birefringence in the limit for a rod, as it does for the moments6

•
12

. 

---- -~ ------ -~-J 

FIG. 1 

Plot of /':,.r1.erl /':,.a against x = ).L 
20 
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For the Gaussian region we obtain, by the limiting transition L ~ 00 

(28) 

where lSI is the length of a statistical segment. If we assume that 

lim ~C(ef = ~a . lop, (29) 
L-oo 

we obtain in this case a relation between the length of the statistical and the optical 
segments, lop 

(30) 

Such a result is in agreement with the theory of Noda and Hearse, while for a per
sistent chain both the Gotlib-Svetlov 1 and the Shimada-Yamakawa4 theories give: 

(31) 

We believe that the difference is due to the fact that both in the Tagami and in the 
modified Harris-Hearst model (employed by Noda and Hearse) the condition 
lui = 1 has been removed, unlike the persistent chain. Essentially, the mode of cal
culation of ~C(er used in our work is identical with that employed in the paper of Got
lib and Svetlov1

. 

The difference between our result and that provided by the theory of Noda and 
Hearse, who obtained (~C(ef)r = ~ ilaL, in the limit L~ 0, is obviously due to the 
fact that unlike the Harris-Hearst model12

, in the case of Tagami model the tangential 
vector at the beginning of the chain Uo has been selected as a unit vector (Eq. (11)). 

The persistent chain is evidently a more realistic model of polymer chain than the 
Harris-Hearst or Tagami model. A comparison of the dependence of ~C(er/~a 
on the reduced chain length for the Tagami model (Fig. 1) and for the persistent 
chain (Fig. 1 in reU) shows, however, that their shapes are very similar. We believe, 
therefore, that the Tagami model may serve (owing to its greater mathematical 
simplicity) as a useful model of the polymer chain, also with respect to the investiga
tion of the dependence of the second term in Eq. (2) (or of similar physical quantities) 
on the chain length. 

The author thanks Drs M . Bohdanecky and J. Kovar for valuable comments on this work. 
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